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ABSTRACT: Three satellite gridded daily precipitation datasets—PERSIANN-CDR, GPCP, and CMORPH—that are

part of the NOAA/Climate Data Record (CDR) program are evaluated in this work. The three satellite precipitation

products (SPPs) are analyzed over their entire period of record, ranging from over 20 years to over 35 years. The products

intercomparisons are performed at various temporal (daily to annual) resolutions and for different spatial domains in order

to provide a detailed assessment of each SPP strengths and weaknesses. This evaluation includes comparison with in situ

datasets from the Global Historical Climatology Network (GHCN-Daily) and the U.S. Climate Reference Network

(USCRN). While the three SPPs exhibited comparable annual average precipitation, significant differences were found with

respect to the occurrence and the distribution of daily rainfall events, particularly in the low and high rainfall rate ranges. Using

USCRN stations over CONUS, results indicated that CMORPH performed consistently better than GPCP and PERSIANN-

CDR for the usual metrics used for SPP evaluation (bias, correlation, accuracy, probability of detection, and false alarm ratio,

among others). All SPPs were found to underestimate extreme rainfall (i.e., above the 90th percentile) from about220% for

CMORPH to 250% for PERSIANN-CDR. Those differences in performance indicate that the use of each SPP has to be

consideredwith respect to the application envisioned, from the long-termqualitative analysis of hydroclimatological properties

to the quantification of daily extreme events, for example. In that regard, the three satellite precipitation CDRs constitute a

unique portfolio that can be used for various long-term climatological and hydrological applications.
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1. Introduction

Since the 1960s, weather and environmental satellites have

provided valuable observations of the earth and the atmo-

sphere. The number of atmospheric and environmental vari-

ables being monitored has constantly increased since. As the

period of observation grows, global satellites products consti-

tute an invaluable complement to in situ observations that are

spatially limited by nature. They have become suitable to in-

vestigate weather variability and climate trends in support of

economic vitality, energy, agriculture, water resources, human

health, public safety, community resilience to climate change,

and national security.

In this work, we focus on three gridded daily satellite pre-

cipitation products (SPPs) that are part of the NOAA/NCEI’s

Climate Date Record (CDR) portfolio. Briefly, satellite based

Climate Data Records were created to address the need for

essential climate variables (ECVs) as identified by the Global

Climate Observing System (GCOS). A CDR is defined as a

dataset of environmental variables that satisfy the criteria of

length of record, consistency, and continuity (National Research

Council 2004). NOAA’s CDR program, which includes over 40

operational CDRs covering a wide range of environmental

variables, is part of this effort to produce robust and scien-

tifically sound climate records from satellite data (https://

www.ncdc.noaa.gov/cdr).

The three precipitation CDRs, namely, PERSIANN-CDR,

GPCP, and CMORPH were developed for long-term hydro-

logical and climatic analysis and applications. Here, we use

‘‘long-term’’ in the context of satellite observation platforms

that have time series spanning over two to three decades.

Those SPPs are among the multitude of gridded SPPs that exist

and that rely on different physical retrieval principles, dif-

ferent bias adjustment techniques and reference datasets

(Michaelides et al. 2009; Kidd et al. 2010; Kidd and Huffman

2011; Tapiador et al. 2012; Prat and Nelson 2020). PERSIANN-

CDR, GPCP, and CMORPH have been used for numerous

hydrological and climatological applications. Those SPPs have

been the object of several evaluations against others SPPs,

ground based radars, or in situ datasets (Tian et al. 2009; Hirpa

et al. 2010; AghaKouchak et al. 2011, 2012; Gebremichael et al.

2014; Miao et al. 2015; Prat and Nelson 2015; Katiraie-

Boroujerdy et al. 2017; Beck et al. 2017, 2019a; Adler et al.

2018; Ferraro et al. 2018; Nguyen et al. 2018; Tan and Santo

2018; Sadeghi et al. 2019, among others). There are several

challenges in evaluating SPPs and assessing their ability to

accurately capture precipitation patterns and characteristics.

All SPP evaluation studies face the obvious limitations that

arise from comparing surface area precipitation estimates

(pixel dimension of the SPP) with a point measurement (Ciach

and Krajewski 1999; Ciach et al. 2003, 2007; Habib et al. 2004).

Ideally, an evaluation of SPPs would require that the reference

in situ dataset is not part of the SPP bias-adjustment procedure

(Prat and Nelson 2014, 2015; Beck et al. 2017, 2019a). In recent

studies, Beck et al. (2017, 2019a) have pointed out the threemajorCorresponding author: Olivier P. Prat, opprat@ncsu.edu
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challenges and limitations in evaluating SPPs. As mentioned,

most available evaluations of SPPs 1) haveused reference datasets

that are also used in the calibration or the bias-adjustment pro-

cedure of the SPP, leading to biased evaluation; 2) were con-

ducted locally using a limited number of gauges; and 3) have used

daily accumulation as a function of the local time, which can

cause a portion of the daily rainfall to be assigned to a different

day than the SPP (see Beck et al. 2017, 2019a for review).

Most of the studies mentioned above have considered SPP

evaluation over different regions. However, those evaluations

were often limited in domain and/or in time. In fact, few studies

have provided a global assessment and long-term performance

evaluation of SPPs (e.g., Tian and Peters-Lidard 2010; Beck

et al. 2017, 2019a; Massari et al. 2017; Nguyen et al. 2018; Sun

et al. 2018). A long-term evaluation is particularly important in

the context SPP applications to hydrological and hydro-

climatological extremes such as extreme precipitation [see

Tables 2 and 3 in Prat and Nelson (2020) for review] or drought

detection and monitoring for instance (Prat et al. 2018, 2020).

The aim of this work is to provide a comparative long-term

evaluation of the three SPPs that are part of the CDR program.

The evaluation is performed at temporal scales from annual to

daily over their concurrent period of record from 1998 to 2018

(21 years). At the daily scale, the focus is to assess each SPP

performance by quantifying errors and biases with respect to

in situ data. Our goal is to address, at least partially, the points

mentioned above by providing a long-term, global, and inde-

pendent evaluation of each SPP. The latest point will be

achieved by using gauges from the U.S. Climate Reference

Network (USCRN) that are not used in SPP bias adjustment

procedures. Ultimately, this work would provide an objective

basis for merged precipitation product algorithm improvement.

The paper is organized as follows. The characteristics and

underlying physical principles of the three SPPs (PERSIANN-

CDR, CMORPH, GPCP) to be evaluated are detailed in

section 2. In situ datasets used as ground evaluation (GHCN-

D, USCRN) are presented along with the digital elevation

model (DEM) used to connect each satellite pixel to topo-

graphic features. Section 3 will present the results if the study

and associated discussion. The section will be organized in two

subsections. First, we present a global evaluation of the SPPs

that will compare long-term average precipitation features for

the three SPPs over their concurrent period of record. The

comparison will be conducted at annual, seasonal, and daily

scale. Each SPP will also be compared globally against GHCN-

D in situ data. In a second subsection, we will perform a more

detailed analysis of the performances of the three SPPs over

CONUS. An evaluation will be conducted by using rainfall

observations from the USCRN stations. Finally, section 4 will

summarize the most important findings of the study.

2. Precipitation datasets and SPP algorithms description

a. The satellite precipitation CDRs

1) GPCP

The Global Precipitation Climatology Project (GPCP) has

a suite of products spanning various time and space scales

(Huffman et al. 2001). The GPCP-Monthly CDR is available

for 908S–908N at a spatial resolution of 2.58 3 2.58. The product
is updated monthly as an Interim CDR (ICDR) with the final

version (CDR) available after three months (Adler et al. 2017a).

The global GPCP-Monthly product that is available starting

in 1979, has been used extensively in long-term studies and

hydroclimatic assessments. The daily product which is avail-

able since October 1996 has the same update frequency and

geographical coverage (908S–908N) than GPCP-Monthly but

at a higher spatial resolution of 18 3 18 (Adler et al. 2017b). The

GPCP suite of products (monthly and daily) is a merged sat-

ellite (infrared and microwave) and in situ product (Fig. 1a).

Both monthly and daily GPCP CDRs are available at the

NOAA/National Centers for Environmental Information (NCEI)

Climate Data Records portal. In this work, we use the daily

version v01r03.

2) PERSIANN-CDR

The Precipitation Estimation from Remotely Sensed

Information Using Artificial Neural Networks–Climate Data

Record (PERSIANN-CDR) combines IR satellite precipita-

tion estimates with a neural network technique along with a

monthly bias correction using in situ data throughGPCPmonthly

(Hsu et al. 2014; Ashouri et al. 2015). PERSIANN-CDRprovides

quasi-global (608S–608N) daily precipitation estimate at a spatial

resolution of 0.258 3 0.258. PERSIANN-CDR is available from

1983 to the delayed present with a quarterly update frequency.

The version used is v01r01. Figure 1b summarizes the different

sensors and ancillary products used in PERSIANN-CDR. For

more detail of the algorithm, the reader can refer to Ashouri

et al. (2015).

3) CMORPH

The Climate Prediction Center (CPC) morphing technique

(CMORPH) provides a precipitation estimates at the native

temporal and spatial resolutions of 30min and 8 km 3 8 km,

respectively, for the domain 608S–608N (Joyce et al. 2004). The

product is also available at the hourly and daily scales at

0.258 3 0.258. CMORPH combines precipitation estimates

derived from passive microwave (PMW) sensors through the

advection of cloud features from more frequently available

infrared measurements (i.e., the morphing technique). The

bias-adjusted version of the product uses daily surface gauge

analysis from the CPC over land (Xie et al. 2010) and the

Pentad version of GPCP over ocean (Xie et al. 2003) (Fig. 1c).

More details regarding the CMORPH algorithm and precipi-

tation products can be found in Xie et al. (2017, 2018).

CMORPH is available from 1998 to the delayed present. A

non-bias-adjusted CMORPH is available as an interim version

within two days to the present date. The version used in this

work is CMORPH V1.0. To avoid possible confusion with

more recent versions of CMORPH under development, the

version used in this work will be hereinafter referred as

CMORPH-CDR.

The characteristics for each precipitation CDR are provided

in Table 1. Figure 1 provides a schematic of the methods,

physical principles, input datasets used, and dataset dependen-

cies. It worth noticing that those SPPs can differ substantially
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from their respective namesakewithwhom the precipitation and

remotely sensed scientific community might be more familiar

with. For instance, PERSIANN-CDR (Ashouri et al. 2015) is in

nature a very different product than the original product it

shares its namewith (Sorooshian et al. 2000). PERSIANN-CDR

relies on the fundamental CDRGRIDSATB1 (i.e., Geostationary

IR channel brightness temperature) as main input which pro-

vides quasi global (708S–708N) IR brightness temperature ev-

ery 3 h at an 8-km resolution. Similarly, CMORPH-CDR is the

bias corrected version (sometimes noted CRT) of the near-

real-time CMORPH and is available with a delay of four

months once global gauge analysis (CPC) and GPCP-Pentad

estimates are finalized. For the most recent period, the near-

real-time CMORPH is available within a day as an ICDR.

Figure 1 shows the different input datasets and underlying

physical principles that characterize the different satellite

precipitation CDRs. PERSIANN-CDR is solely an IR product

that uses in situ bias-adjustment procedure and another CDR

(GPCP-Monthly) for calibration. GPCP is almost entirely an

IR product with additional input from the Special Sensor

Microwave Imager (SSM/I) based on PMWprinciples. Adjustment

of the satellite derived global precipitation fields is performed

at the monthly scale with in situ data from the Global Historical

ClimatologicalNetwork (GHCN) and from theClimateAnomaly

Monitoring System (CAMS) for the years prior to 1986, and

with gridded data from the Global Precipitation Climatology

Centre (GPCC) for the most recent period. Because the

bias-corrected PERSIANN-CDR uses GPCP-Monthly v02r02

to maintain consistency in monthly precipitation totals, the

quality of precipitation estimatesmight depend to some extend

on the biases present in GPCP. With GPCP being a merged

product, biases are due to the degradation of individual sat-

ellite performance, algorithm differences, instrumental cali-

brations, sensor availability, transition between satellites with

limited lifespan, and the evolution of gauges analysis among

others (Adler et al. 2018). It is important to note that

PERSIANN-CDR used GPCP-Monthly v02r02 that exhibit a

slight and incorrect decrease in ocean precipitation for the

years after 2002. Those biases were related to small shifts in the

input of satellite precipitation estimates due to the transition

fromone satellite to the next and to the inadequate overlap and

cross-validation procedures. The GPCP daily product (v01r03)

evaluated in this study includes corrections to cross calibration

of satellite data inputs and updates to theGPCC gauge analysis

(Adler et al. 2018).

Conversely, CMORPH-CDR is mostly a PMW product but

uses IR imagery fromGeostationary Operational Environmental

Satellites (GEOS) for the morphing technique and the

cloud advection scheme. For the bias-adjustment proce-

dure, CMORPH-CDR uses rain gauge data from the CPC

FIG. 1. Multisatellite products with the different sensors used (MW: microwave; IR: infrared; RG: rain gauge) in

the three precipitation CDRs: (a) GPCP, (b) PERSIANN-CDR, and (c) CMORPH-CDR. The definition of each

product acronyms is provided in the list at the end of the manuscript.
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daily analysis over land and GPCP pentad over ocean (Xie et

al. 2017, 2018). While the conversion from IRmeasurements is

typically less accurate because they assume a simple depen-

dency between the satellite measured cloud-top IR tempera-

ture and the rain rate, passive microwave methods by scanning

through the precipitating systems are directly affected by the

characteristic of the hydrometeors present within the atmo-

spheric column, and thus considered more reliable (Prat and

Nelson 2020).

b. In situ quantitative precipitation estimates datasets

1) GLOBAL HISTORICAL CLIMATOLOGICAL

NETWORK–DAILY

Precipitation surface observations are taken from the Global

Historical Climatology Network–Daily (GHCN-D). The dataset

gathers records from over 100 000 stations over 180 countries.

About two-thirds of those stations report total daily precipitation

only while the other stations include information such as

maximum and minimum temperature, snowfall, and snow

depth (Menne et al. 2012). The entire dataset is routinely

quality controlled to ensure basic consistency. The daily ac-

cumulation for GHCN-D stations is a function of the local time

while most daily satellite products report in UTC time (0000–

0000 UTC). If the influence might be limited for evaluation

over a multiday time scale (i.e., pentad, weekly, or monthly for

instance), the impact at the daily scale could be nonnegligible.

2) U.S. CLIMATE REFERENCE NETWORK

The U.S. Climate Reference Network (USCRN) is com-

posed of about 140 stations in the United States and provides

an ensemble of quality-controlled atmospheric parameters

(rain rate, relative humidity, air temperature, and soil moisture

for instance) at 5-min, 1-h, and 1-day temporal resolutions

(Diamond et al. 2013; Leeper et al. 2015). From the 1-h rainfall

accumulation, we can aggregate daily precipitation totals to

the same daily accumulation than the SPPs (0000–0000 UTC).

Data from the USCRN are used to evaluate daily precipitation

estimates from the SPPCDRdatasets over CONUS. The analysis

covers the years 2007–18. The regional network identical to

USCRN deployed in Alabama (ALCRN: 17 stations) is also

included in the comparison. Additionally, USCRN stations

were augmented by a higher-density network of U.S. Regional

Climate Reference Network stations in the four corner states

(Utah, Colorado, NewMexico, and Arizona) for a short period

(2009–14), allowing for an analysis of 75 stations in this region

over that period (hereinafter 4CCRN).

c. Ancillary data: Digital elevation model

To identify each pixel as an ocean or land grid point, along

with its respective elevation, we use a DEM proposed by Nickl

(2012). Topographic patterns can have significant influence on

the spatial variability of land surface precipitation at global,

regional, and local scales (Smith 1979; Barry 1992). The to-

pographic variables considered are elevation (z), longitudinal

and latitudinal components of slope (dz/dx, dz/dy) and expo-

sure to orography (E). Elevation is one of the most important

topographic factors related to precipitation. On a mountain

slope, forced uplift of air masses can cause precipitation to

increase with elevation (orographic effect), depending on the

size and orientation of the mountain (Smith 1979; Barry 1992;

Daly et al. 1994). Slope and slope orientation have important

effects on precipitation due to their effects on solar irradiation

and exposure towinds carrying humidity (Barry 1992). Exposure

to orography E is represented by a heightened ‘‘exposure.’’ An

orographic area, for example, may exhibit a general windward

orientation but it also may contain a hill with a higher elevation

that may enhance the local orographic effect. To estimate ex-

posure, the elevation of each grid cell is compared to the av-

erage elevation trend over the orographic area (Nickl 2012).

The relationship between topographic patterns (z, dx/dz,

dy/dz, E) and precipitation improves when the topographic

patterns are averaged up to an appropriate spatial scale. This

‘‘optimum’’ spatial scale is known as the ‘‘orographic’’ scale or

resolution, and it may vary spatially as well as temporally.

Some authors have found that elevation, when averaged up to

spatial scales of 2–15km (;1–8-min resolution), is more corre-

lated with station precipitation than the station’s actual elevation

(Spreen 1947; Burns 1953; Schermerhorn 1967; Hibbert 1977).

Elevation at 0.5-min resolution was obtained from global dig-

ital elevation model GTOPO30 (USGS 1996). Each satellite

pixel and surface station are associated with the nearest grid

TABLE 1. Satellite precipitation Climate Data Records (CDRs) and their characteristics. In bold are the SPPs used in this study.

SPP

Resolution Domain

(latitude)

Period of

record

Latency/update

frequency Input data Access (ftp)Temporal Spatial

GPCP Monthly 2.58 90°N–90°S 1979–

present

1-month

(interim data)

3-month
(final data)

IR, PMW,

in situ

https://www.ncei.noaa.gov/data/

global-precipitation-climatology-

project-gpcp-monthly/access/
Daily 1° 1996–

present

https://www.ncdc.noaa.gov/cdr/

atmospheric/precipitation-

gpcp-daily.

PERSIANN-
CDR

Daily 0.25° 60°N–60°S 1983–
present

4-month IR, in situ

(GPCP)

https://www.ncdc.noaa.gov/cdr/
atmospheric/precipitation-

persiann-cdr.

CMORPH Daily 0.25° 60°N–60°S 1998–

present

1-day (interim

data) 2-month
(final data)

PMW, IR,

in situ

https://www.ncdc.noaa.gov/cdr/

atmospheric/precipitation-
cmorph.

Hourly

30min 8-km

2294 JOURNAL OF HYDROMETEOROLOGY VOLUME 22

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 10/04/22 02:54 PM UTC

https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-monthly/access/
https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-monthly/access/
https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-monthly/access/
https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-gpcp-daily
https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-gpcp-daily
https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-gpcp-daily
https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-persiann-cdr
https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-persiann-cdr
https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-persiann-cdr
https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-cmorph
https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-cmorph
https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-cmorph


point ofGTOPO30, and then topographic information (z, dz/dx,

dz/dy,E) is averaged up from a higher resolution of 0.5min, to a

coarser spatial resolution of 2.5min to better describe overall

relationships between satellite precipitation and topographic

patterns. The longitudinal component of slope (dz/dx) is esti-

mated at each satellite pixel as the average of the differences in

elevations between the east adjacent cell and the reference cell

and between the west adjacent cell and the reference cell (south

and north cells for the latitudinal component of slope: dz/dy).

The grid area changes with latitude being accounted for; the

same process is applied for the polar regions. A circle is used to

bound and estimate the orographic area associated with a lo-

cation of interest (in situ stations in general and satellite pixel

in this case), and the average of the gridcell values within the

circle is estimated for each topographic variable. Each satellite

pixel at their native resolution (18 3 18 for GPCP, 0.258 3 0.258
for CMORPH-CDR and PERSIANN-CDR) is associated

with elevation (z), longitudinal and latitudinal components of

slope (dz/dx, dz/dy) and exposure to orography (E) from

the DEM.

3. Results and discussion

a. Global evaluation of SPPs

1) LONG-TERM AVERAGE PRECIPITATION FEATURES

Figure 2 displays the annual average daily precipitation from

1998 to 2018 for PERSIANN-CDR (Fig. 2a), CMORPH-CDR

(Fig. 2b), andGPCP (Fig. 2c). Global precipitation patterns are

comparable with zones of intense convection clearly recog-

nizable such as along the intertropical convergence zone

(ITCZ), the Kuroshio (coast of Japan), and the Gulf Stream

(Atlantic Ocean). Over land, areas with the highest daily av-

erage rainfall are found over the Amazon, in Southwest India

(Malabar Coast), the Philippines, the Himalayan Mountain

range, and the Pacific Northwest (North America). The influ-

ence of the spatial resolution is clearly visible when looking at

the standard deviation for annual precipitation (Figs. 2d–f).

CMORPH-CDR (0.258 3 0.258) displays the finer spatial fea-

tures when comparing to GPCP (18 3 18). PERSIANN-CDR

also at 0.258 3 0.258, displays a smoother pattern than

CMORPH-CDR for the standard deviation because it is

adjusted withGPCP-Monthly (2.58 3 2.58). The ‘‘downscaling–
upscaling’’ process tends to ‘‘wash out’’ the precipitation

features over the areas with higher average rainfall when

regridded at the native resolution (0.258 3 0.258). The highest

daily rainfall variability is found over the areas of intense

convective activity (ITCZ and land areas mentioned above)

and over areas directly affected by climate indices such as

ENSO (Pacific Ocean) for instance. A closer look at the dif-

ferences in average rainfall between the SPPs (Figs. 2g–i),

shows that PERSIANN-CDR and GPCP (Fig. 2g) remain

relatively close, with the biggest differences located along the

ITCZ. The similitudes between PERSIANN-CDR and GPCP

are expected since PERSIANN-CDR used GPCP-Monthly

for bias adjustment. As a result, the differences between

CMORPH-CDR and GPCP (Fig. 2h) and CMORPH-CDR

and PERSIANN-CDR (Fig. 2i), display similar patterns. The

most important differences are found along the equator and at

higher latitudes (eastern United States, Canada, Europe,

Russia) where CMORPH-CDR displays significantly lower

average rainfall than GPCP (Fig. 2h) and PERSIANN-CDR

(Fig. 2i). CMORPH-CDRdisplays higher average rainfall over

maritime Southeast Asia (Malaysia, Philippines, New Guinea)

than the two other SPPs. Those differences will be analyzed

more into details in an upcoming section.

Figure 3 displays the zonal averaged precipitation estimates

over the temperate and tropical band (508S–508N: Figs. 3a,c)

and over the tropical band (238S–238N: Figs. 3b,d). All SPPs

display comparable latitudinal average precipitation on an

FIG. 2. (a)–(c) Average precipitation and (d)–(f) standard deviation for (left) PERSIANN-CDR, (center) CMORPH-CDR, and (right)

GPCP. Differences in average rainfall between (g) PERSIANN-CDR and GPCP, (h) CMORPH-CDR and GPCP, and (i) CMORPH-

CDR and PERSIANN-CDR (i). Data are for the period 1998–2018.
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annual basis as illustrated by the years 1998 (Figs. 3a–b) and

2005 (Figs. 3c–d). There are noticeable differences over the

tropical belt with CMORPH-CDR displaying more variability

than PERSIANN-CDR and GPCP (Fig. 3b,d) which is con-

sistent with the differences in standard deviation observed

previously (Fig. 2). Differences can be attributed for the most

part to the different rainfall retrieval methods used and to the

different spatial resolution of the SPPs as mentioned earlier.

Figures 3e–f present a comparison of the annual daily average

rainfall over the temperate and tropical domains (Fig. 3e) and

over the tropics (Fig. 3f) over the respective period of record of

each SPP. Over the concurrent period of record (1997–2018),

PERSIANN-CDR and GPCP are quasi identical due to the

fact that PERSIANN-CDR is bias-adjusted withGPCP-Monthly.

With respect to the two other products, CMORPH-CDRpresents

slightly lower precipitation averages both for the temperate

domain (508S–508N) and over the tropics (238S–238N). This

average difference between CMORPH-CDR and the two

other products is between 24.0% 6 0.15% (508S–508N)

and 23.4% 6 0.5% (238S–238N) over the concurrent period

of record (1998–2018).

2) ANNUAL AND SEASONAL PRECIPITATION

Figure 4 presents a comparison of the annual average pre-

cipitation for the SPPs over ocean (Fig. 4a), over land (Fig. 4b),

and for elevation above 1000m as defined by the DEM

(Fig. 4c). The values for the average rainfall and the differences

between the SPPs are reported in Table 2. Over ocean (Fig. 4a),

all CDRs display the same annual average daily rainfall with

less than 1% difference between the three SPPs over the

period 1998–2018. This similarity is not surprising since both

PERSIANN-CDR and CMORPH-CDR use GPCP as an

input for bias adjustment (GPCP-Monthly or GPCP-Pentad,

respectively). Over land (Fig. 4b), PERSIANN-CDR and

GPCP remain similar for the same reasons with differences of

about 1.2%. Conversely, CMORPH-CDR displays lower av-

erage daily rainfall than the two other SPPs with differences of

about 214%. Over land, CMORPH-CDR uses in situ infor-

mation from the CPC daily analysis for bias-adjustment (Xie

et al. 2010). As shown previously (Fig. 2), CMORPH-CDR

presents important differences with GPCP (Fig. 2h) and

PERSIANN-CDR (Fig. 2i) with lower average rainfall over

the eastern United States and Canada and over Europe and

Russia. Those differences are not compensated by higher

rainfall observed over maritime Southeast Asia. For elevation

above 1000m, average rainfall is lower than over land for the

three SPPs (Fig. 4c). Like previously, PERSIANN-CDR and

GPCP are relatively close with differences of about 3%, while

CMORPH-CDR presents a lower average daily rainfall when

compared to the two other SPPs of about 218%.

A monthly analysis is provided in Fig. 5 comparing the daily

average precipitation over land for January (Figs. 5a–c) and

July (Figs. 5d–f). Furthermore, the analysis was conducted

successively over the northern and southern hemispheres to

investigate differences between the cold and warm seasons.

Regardless of themonth and the geographical area considered,

PERSIANN-CDR and GPCP display comparable average

rainfall. Average rainfall is higher in July (Fig. 5d) than in

January (Fig. 5a). More specifically, we find higher average

rainfall during the warm season; July in theNorthernHemisphere

(Fig. 5e) and January in the Southern Hemisphere (Fig. 5c)

than during the cold season; January in theNorthernHemisphere

(Fig. 5b) and July on the Southern Hemisphere (Fig. 5f).

The average differences between PERSIANN-CDR and

GPCP remain below 1% for all the cases presented (Table 2).

CMORPH-CDR displays lower rainfall averages than the two

FIG. 3. (a)–(d) Satellite QPE products comparison of the zonal averaged precipitation estimates for (left) the globe (508S–508N) and

(right) the tropical band (238S–238N) for the years 1998 in (a) and (b) and 2005 in (c) and (d) as a function of the longitude (1808–1808).
(e),(f) Evolution of the zonal averaged rainfall for (e) the globe and (f) the tropics presented for the period of record and for each product

(lower row).
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other SPPs (Figs. 5a–f). Those differences range between28%

for July in the Southern Hemisphere (Fig. 5f) and 238% for

January in the NorthernHemisphere (Fig. 5b). The differences

between CMORPH and the two other SPPs are more impor-

tant in the Northern Hemisphere with 238% in January

(Fig. 5b) and 215% in July (Fig. 5e) which corresponds to the

cold and warm season, respectively (Table 2). In the Southern

Hemisphere, those differences are relatively close with 211%

in January (Fig. 5c) and 28% in July (Fig. 5f), which corre-

spond to the warm and cold seasons, respectively. The differ-

ences being more important in the Northern Hemisphere is

consistent with results presented in Fig. 2, which showed lower

average rainfall for CMORPH-CDR at higher latitudes over

North America, Europe, and Asia (Fig. 2h). Finally, the fact

that the differences between CMORPH-CDR and the two

other SPPs are themost important during the cold season in the

Northern Hemisphere (Fig. 5b), is possibly due to the inability

for microwave sensors to retrieve precipitation over snow

covered surface (Tian et al. 2009; Beck et al. 2019a).

3) DAILY PRECIPITATION CHARACTERISTICS

Figure 6 displays the value of the maximum daily precipi-

tation (Figs. 6a–c) along with the average number of rainy days

(Figs. 6d–f). The three SPPs exhibit large differences when it

comes to the value of the maximum daily precipitation

(Figs. 6a–c). CMORPH-CDR displays significantly higher

maximum rainfall (Fig. 6b) than PERSIANN-CDR (Fig. 6a)

and GPCP that displays much lower maximum daily rainfall

TABLE 2. Average annual daily precipitation (ocean, land, high elevation) and average monthly daily precipitation for the months of

January (JAN) and July (JUL) over land (global and Northern and Southern Hemispheres) for GPCP, PERSIANN-CDR (PERS), and

CMORPH-CDR (CMOR). The differences between the three SPPs are also reported.

Average daily rainfall (mm day21) Differences (%)

GPCP PERS CMOR PERS 2 GPCP CMOR 2 GPCP CMOR 2 PERS

Ocean 2.99 6 0.10 2.97 6 0.10 2.97 6 0.10 20.7 20.7 0.0

Land 2.49 6 0.16 2.52 6 0.12 2.14 6 0.13 1.2 214.1 215.1

High elevation (h . 1000m) 1.71 6 0.12 1.76 6 0.08 1.42 6 0.11 2.9 217.0 219.3

Land (JAN) 2.49 6 0.22 2.51 6 0.20 2.00 6 0.20 0.8 219.7 220.3

Northern Hemisphere (JAN) 1.16 6 0.23 1.17 6 0.19 0.72 6 0.18 0.9 237.9 238.5

Southern Hemisphere (JAN) 5.34 6 0.52 5.39 6 0.64 4.77 6 0.73 0.9 210.7 211.5

Land (JUL) 2.71 6 0.31 2.71 6 0.34 2.34 6 0.25 0.0 213.7 213.7

Northern Hemisphere (JUL) 3.32 6 0.41 3.33 6 0.45 2.84 6 0.31 0.3 214.5 214.7

Southern Hemisphere (JUL) 1.39 6 0.25 1.38 6 0.27 1.27 6 0.29 20.7 28.6 28.0

FIG. 4. Average annual precipitation for selected areas (ocean, land, high elevation) for PERSIANN-CDR,

CMORPH-CDR, and GPCP. Ocean and land information along with elevation information are derived from the

DEMat the same spatial resolution than the respective SPPCDRproduct, which is 0.258 for PERSIANN-CDRand

CMORPH-CDR and 18 for GPCP.
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(Fig. 6c). At higher latitudes (i.e., above 408N and below 408S),
we note very low values for the maximum daily precipitation

for GPCP and to a lesser extend for PERSIANN-CDR. As

reported elsewhere, differences between the three SPPs in-

creased with increasing daily rain rates (Prat and Nelson 2020).

Those differences ranged from 40%, 67%, and 100% at the

70th, 90th, and 99th percentiles, respectively.

Large differences are also found in the number of rainy days

(Figs. 6d–i). Over the ocean, PERSIANN-CDR (Fig. 6b) displays

significantly less rainy days than CMORPH-CDR (Fig. 6i) and

GPCP (Fig. 6g). This is particularly noticeable along the ITCZ.

At higher latitudes, GPCP exhibits a higher number of rainy

days than PERSIANN-CDR (Fig. 6g) and CMORPH-CDR

(Fig. 6h). Over land, the higher number of precipitation days

are found along the tropics for the three SPPs (Figs. 6d–f).

Along the equatorial belt, PERSIANN-CDR (Fig. 6d) displays

the highest number of rainfall days, followed byGPCP (Fig. 6f)

and CMORPH-CDR displaying a significantly lower number

of rainy days further restricted to a smaller land area (Fig. 6e).

Outside of the equatorial belt (238S–238N), CMORPH-CDR

FIG. 5. Average precipitation overland for the months of (a)–(c) January and (d)–(f) July for PERSIANN-CDR,

CMORPH-CDR, and GPCP. Results are provided for the entire globe in (a) and (d), the Northern Hemisphere in

(b) and (e), and the Southern Hemisphere in (c) and (f) for January and July, respectively.
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displays the lowest number of rainfall days (Fig. 6e) when

compared to PERSIANN-CDR (Fig. 6i) and GPCP (Fig. 6g).

For CMORPH-CDR the spatial distribution of rainy days

aligns more distinctively with orographic land characteristics

when compared to the other SPPs as can be seen over the

mountainous areas of theRockies in the westernUnited States,

the Himalayas, and the Andes (Fig. 6e). Over CONUS,

PERSIANN-CDR presents a higher number of rainy days

than GPCP (Fig. 6g) and CMORPH-CDR (Fig. 6i). Globally,

PERSIANN-CDR displays more rainy days in most land areas

in Africa, Australia, and North and South America than GPCP

and CMORPH-CDR, except over northern Europe where

GPCP has more rainy days. Results obtained for CMORPH-

CDR, for the spatial repartition of maximum rainfall (Fig. 6b)

and percent of rainy days (Fig. 6e) are comparable with other

studies (Beck et al. 2019b). Over land, apart from some lo-

calized areas such as the Himalayas, CMORPH-CDR has a

lower number of rainy days when compared to PERSIANN-

CDR and GPP and a lower average daily rainfall as shown

previously (Figs. 4 and 5). At higher latitudes in the northern

(North America, Europe, Asia) and southern (Argentina)

hemispheres, CMORPH-CDR indicates a lower number of

rainy days (Figs. 6h–i), which corresponds to a lower average

daily rainfall (Figs. 2h–i). Rainfall retrievals are knowingly

a challenge for microwave sensors over land covered snow

during the cold season (Tian et al. 2009; Stampoulis and

Anagostou 2012; Beck et al. 2019a). It is interesting to notice

that over the ocean gyres (North and South Pacific, North and

South Atlantic, Indian Ocean), CMORPH-CDR indicates

more rainy days than GPCP (Fig. 6h) and PERSIANN-CDR

(Fig. 6i). However, this does not translate by an increase in

average daily precipitation when compared to GPCP (Fig. 2g)

and PERSIANN-CDR (Fig. 2i) because GPCP is being used as

bias adjustment over ocean. Similarly, PERSIANN-CDR dis-

plays similar average daily precipitation when compared to

GPCP (Fig. 2g) despite having a higher number of rainy days

(Fig. 6g), because GPCP is used for bias adjustment over land

and over ocean (Figs. 4 and 5).

The differences, in terms of maximum daily precipitation

and daily precipitation occurrence, can be explained by the

limitations inherent to each remotely sensed technique (in-

frared, microwave), sensor sensitivity in detecting light rainfall

events, and the bias-adjustment procedures used can be cited

as the most likely causes. The similarities regarding average

daily rainfall are explained by the bias-adjustment procedure

and the product (in situ, satellite) used as reference.

4) COMPARISON WITH GHCN-D IN SITU DATA

A contingency analysis for daily rainfall (R. 0mmday21) is

provided at each GHCN-D station reporting at least 90% of

the time for the year 2013 (Fig. 7). Each SPP—PERSIANN-

CDR, CMORPH-CDR, and GPCP—display the same global

pattern for misses (Figs. 7a–c), hits (Figs. 7d–f), and false alarm

(Figs. 7g–i). We note that all SPPs display the highest number

of hits (i.e., rain detected simultaneously by the gauge location

and at the corresponding satellite pixel) over the eastern

United States. Conversely, there is a higher number of false

alarm (i.e., rain detected by the satellite only) over the western

United States. Those differences could be due to the type of

precipitation over the Rockies and the convective and local-

ized nature of precipitation over mountainous areas. The dif-

ference between the gauges local reporting time that varies

over CONUS (Menne et al. 2012) and the satellite daily ac-

cumulation could also explain the differences between the west

and the east. If the mismatch between GHCN-D and satellite

products is important (from a few hours to half a day), this

could result in a significant portion of daily rainfall to be as-

signed to the wrong neighboring day (Beck et al. 2019b).

Australia presents a lower number of hits and a higher number

of false alarm comparable to those found over the western

FIG. 6. (a)–(c)Dailymaximum rainfall, (d)–(f) number of rainy days for (left) PERSIANN-CDR, (center) CMORPH-CDR, and (right)

GPCP for the period 1998–2018. Differences in the number of rainy days between (g) PERSIANN-CDR andGPCP, (h) CMORPH-CDR

and GPCP, and (i) PERSIANN-CDR and CMORPH-CDR.
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United States. Here as well, the temporal mismatch between

the in situ data accumulation and the SPPs is a possible ex-

planation. Those characteristics are shared between the three

SPPs. A closer look provides information in terms of differ-

ences between satellite products. PERSIANN-CDRpresents a

lower rate of misses (i.e., rain measured by the rain gauge

without any rain detected by the satellite) (Fig. 7a) than the

two other products CMORPH-CDR (Fig. 7b) and GPCP

(Fig. 7c). This could indicate an increased sensitivity in de-

tecting of low rainfall events by the satellite which relies on IR

observations. This would be consistent with previous results

that showed that PERSIANN-CDR had a higher number of

rainy days when compared to CMORPH-CDR (Fig. 6i) and

GPCP (Fig. 6g). Other noticeable divergence from the pattern

shared by the three SPPs is the higher number of misses re-

ported by CMORPH-CDR at higher latitudes over North

America (Fig. 7b). Those high occurrences of missed precipi-

tation are certainly due to the physical limitation of microwave

sensors in detecting cold precipitation on snow covered surfaces

(Tian et al. 2009; Beck et al. 2019a). This would be consistent

with differences observed between CMORPH-CDR and the

other two SPPs for annual and seasonal rainfall (Figs. 4 and 5).

The biases and correlations of the three SPPs with respect to

in situ GHCN-D are presented in Fig. 8. Each SPP displays

comparable biases for the daily rainfall when compared to

GHCN-D. Globally, GPCP and PERSIANN-CDR present a

positive bias (mean value of about110%)whileCMORPH-CDR

has a negative bias (mean value of 26%) (Table 3). We note

that GHCN-D stations are overwhelmingly located within the

continental United States (about 69%), followed by Australia

(about 19%); the remaining stations being located mostly

in Europe and Asia. Similar values are found over CONUS,

with a positive average bias for PERSIANN-CDR and GPCP

(17/8%) and a negative average bias for CMORPH-CDR

(26%). Over Australia, all SPPs indicate a positive bias with

better statistics obtained with CMORPH-CDR (14%), when

compared to GPCP (17%), and PERSIANN-CDR (115%).

Those biases that could be qualified as satisfying are damp-

ened by the relatively low correlation coefficients. Globally,

CMORPH-CDR presents the highest average correlation for

daily precipitation (0.41) when compared to PERSIANN-CDR

FIG. 7. Contingency analysis for daily rainfall retrieved by the different satellite CDR datasets with respect to in situ data fromGHCN-

D for (left) PERSIANN-CDR, (center) CMORPH-CDR, and (right) GPCP. Results indicate the normalized occurrences for (a)–(c)

misses, (d)–(f) hits, and (g)–(i) false alarms. Data are for the year 2013.

FIG. 8. (top) Bias and (bottom) correlation for daily precipitation

with respect to in situ data from GHCN-D for PERSIANN-CDR

(PERS), CMORPH-CDR (CMOR), and GPCP. Statistics are pro-

vided for all the GHCN-D stations over the entire globe (GLOBAL),

and various subsets of GHCN-D stations including CONUS, and

Australia (AUS). The lower, middle, and upper lines on the box-

plot represent the 25th, 50th (median value), and 75th percentiles.

The red circles represent the average values. Comparisons are for

the year 2013.
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(0.37) and GPCP (0.35). Over CONUS, all products present a

higher correlation at 0.47, 0.43, and 0.38 for CMORPH-CDR,

PERSIANN-CDR, and GPCP, respectively (Table 3). Over

Australia, the correlation between GHCN-D stations and the

three SPPs is extremely low between 0.14 and 0.16, which could

be an indication of temporal mismatch in daily accumulation

between GHCN-D stations and SPPs. However, those evalua-

tions are not completely independent because GHCN-D sta-

tions are incorporated in in situ datasets used for satellite bias

adjustment procedures. Ideally, an evaluation of SPPs would

require using in situ information that is not part of the bias-

adjustment procedure. This will be done next over CONUS

with a comparison with USCRN stations.

b. SPP evaluation over CONUS

1) CONTINGENCY ANALYSIS AND

PERFORMANCE METRICS

Figure 9 displays a contingency analysis at each USCRN

station and associated regional networks (ALCRN, 4CCRN).

The stations hourly rainfall was accumulated over 24-h to

match SPP daily rainfall (0000–0000 UTC). A point-to-pixel

comparison is justified assuming that random sampling er-

rors are negligible (Prat and Nelson 2015, 2020). Overall,

CMORPH-CDR displays the higher ratio of matches with

about 41% of events detected simultaneously by the satellite

and the station (Fig. 9e). The other SPPs are slightly behind

with 38% for GPCP (Fig. 9f) and 37% for PERSIANN-CDR

(Fig. 9d) of simultaneous events recorded by the satellite and

the gauge. Results are consistent with those obtained over

CONUS with GHCN-D (Fig. 7).

Similarly to GHCN-D, there is a difference between east

and west stations (Fig. 7). For USCRN stations located west of

the longitude 1048W, the ratio of events recorded simulta-

neously by SPPs and USCRN stations were 33%, 31%, and

32% for CMORPH-CDR, GPCP, and PERSIANN-CDR, re-

spectively. For stations located east of longitude 1048W, results

were 49%, 44%, and 43%. As a sanity check, we compared

SPPs daily precipitation (UTC) and USCRN daily accumula-

tion considering the local standard time (LST). We noted that

daily accumulation in UTC provided slightly better statistics

than when considering daily accumulation expressed in local

time. For instance, over CONUS, the percentage of events

recorded simultaneously by the SPP and the USCRN stations

are 39%, 37%, and 36% for CMORPH-CDR, GPCP, and

PERSIANN-CDR, respectively (not shown). However, those

differences did not change the performance of each SPP with

respect to the others. How these results would translate to

other part of the world (i.e., Australia) is unclear at this point

and beyond reach in the context of the current study. Please

note that not all the stations have the same period of record.

Stations located over the four corner states cover a 5-yr period

(2009–14) instead of the 11-yr period (2007–18) in the case of

most of the other USCRN stations. An analysis considering the

period 2009–14 for all stations did not show any significant

qualitative differences than when considering the period

2007–18 (not show). The most noticeable differences between

the three SPPs are observed when rainfall is detected at the

USCRN station only. Results show that PERSIANN-CDR

(Fig. 9a) display a significant lower percentage of misses of

6%, when compared to 19% for CMORPH-CDR (Fig. 9b)

and 17% for GPCP (Fig. 9c). Conversely, PERSIANN-CDR

(Fig. 9g) displays a higher percentage of false detection of

about 57% on average, when compared to 40% and 46% for

CMORPH-CDR (Fig. 9h) and GPCP (Fig. 9i), respectively.

Overall, CMORPH-CDR presents the best results with the

highest percentage of hits (41%), the lowest percentage of false

detection (40%), and the lowest ratio of events detected by

satellite or the corresponding gauge only, yet at a high of 59%.

Further performance evaluation is presented in Fig. 10 that

includes metrics such as accuracy, false alarm ratio (FAR),

probability of detection (POD), and probability of false de-

tection (POFD). Overall, CMORPH-CDR displays the best

results with an accuracy of 0.76 (perfect score of 1: Fig. 10b), a

FAR of 0.49 (perfect score of 1: Fig. 10e), a POD of 0.70

(perfect score of 1: Fig. 10h), and a POFDof 0.22 (perfect score

of 0: Fig. 10k). GPCP comes second, with 0.73, 0.55, 0.69, and

0.26 for accuracy (Fig. 10c), FAR (Fig. 10f), POD (Fig. 10i),

and POFD (Fig. 10l), respectively. While, PERSIANN-CDR,

displays a better POD of 0.86 (Fig. 10g), it presents lower

values of accuracy of 0.66 (Fig. 10a), and higher values of FAR

of 0.60 (Fig. 10d) and POFD of 0.41 (Fig. 10j). Considering

TABLE 3. Median, mean, and standard deviation for bias and correlation (corr.) for daily precipitation for the three CDR datasets

with respect to in-sit GHCN-D. Statistics are provided for the globe, CONUS, and Australia. Results are provided for the year 2013 for

GHCN-D stations operating at least 90% of the time.

SPP Statistic

Global CONUS Australia

Bias Corr. Bias Corr. Bias Corr.

GPCP Median 0.95 0.36 0.93 0.38 0.79 0.10

Mean 1.11 0.35 1.08 0.38 1.07 0.15

Std dev 2.06 0.16 1.25 0.16 0.38 0.15

PERSIANN-CDR Median 0.95 0.39 0.93 0.43 0.83 0.11

Mean 1.12 0.37 1.07 0.43 1.15 0.16

Std dev 2.17 0.17 1.24 0.14 0.42 0.14

CMORPH-CDR Median 0.88 0.43 0.88 0.48 0.75 0.11

Mean 0.94 0.41 0.94 0.47 1.04 0.15

Std dev 1.56 0.20 1.51 0.16 0.36 0.14

GHCN-D Stations ffi19 200 ffi13 200 ffi3650
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those metrics, PERSIANN-CDR tends to have a lower threshold

for detectionwhen compared to the other SPPs. CMORPH-CDR

and to a lesser extend GPCP represent a better compromise be-

tween hits and misses. In terms of spatial distribution, SPP per-

formances are better in the east than in the west (east/west of

longitude 1048W) with CMORPH-CDR presenting better statis-

tics with accuracies of 0.77 (east) and 0.74 (west), FARs 0.40 of

(east) and 0.57 (west), PODs of 0.75 (east) and 0.65 (west), and

POFDs of 0.21 (east) and 0.23 (west). The SPPs present the worst

results over theRockyMountains and the four corners region. For

CMORPH-CDR there are noticeable differences in terms of SPP

performances along a northward direction as indicated by a de-

crease in the POD from about 0.75 for stations located south of

408N to 0.57 for stations located north 408N (Fig. 10h). Like for

GHCN-D (Fig. 7), the decrease in performance (POD) along a

northward direction can possibly be linked to the challenges in

retrieving cold precipitation (Tian et al. 2009; Beck et al. 2019a).

This was confirmed by considering separately the cold (DJF) and

warm (JJA) seasons. While there was not significant variation of

the POD with respect to the latitude during the warm season, we

noted an important decrease in the POD in a northward direction

during the cold season (not shown).

To check the influence of each satellite sensitivity at a low

rain rate, we considered a threshold of 0.2mm day21, which is

the same value than the daily limit of USCRN stations (not

shown).We note a slight improvement in the percentages of cases

observed simultaneously at both the satellite and the station.

Those results are 43%, 38%, and 38% for CMORPH-CDR,

GPCP, and PERSIANN-CDR, respectively, to be compared

by 41%, 38%, and 37% (Fig. 9). The most important differ-

ences are reported for the events observed by one of the other

sensors (SPPs or USCRN). There is a significant decrease in

the numbers of events observed only by the SPP (2%–7%)

which translate into an increase in the number observed at the

ground only (1%–4%) (not shown). Regarding the other sta-

tistics (accuracy, POD, FAR, POFD), all three SPPs present an

improvement (increase) for the accuracy (2%–4%), an im-

provement (decrease) for the FAR (from 21% to 24%) and

the POFD (4%–6%). Conversely, the POD displays lower

values (from 22% to 27%) (not shown).

2) SPP QUANTITATIVE EVALUATION

Biases and Pearson correlation coefficients are presented in

Fig. 11. When computed conditionally, that is for rainfall si-

multaneously recorded by the satellite and at the collocated

USCRN station, average biases for CMORPH-CDR, GPCP,

and PERSIANN-CDR are 0.94 (Fig. 11b), 0.92 (Fig. 11c), and

0.71 (Fig. 11a), respectively. Noticeable differences are found

FIG. 9. Contingency analysis for daily rainfall retrieved by the different satellite CDR datasets with respect to in situ data fromUSCRN

for (left) PERSIANN-CDR, (center) CMORPH-CDR, and (right) GPCP. Results indicate the normalized occurrences for (a)–(c) sat-

ellite misses, (d)–(f) hits, and (g)–(i) false alarms. For most USCRN stations, including for the ALCRN regional network, the analysis

covers the years 2007–18. For the stations of theU.S. Regional Climate ReferenceNetwork over the four corner states, the analysis covers

the years 2009–14.
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over the Rockies where PERSIANN-CDR presents negative

biases (ratio , 1) while GPCP and CMORPH-CDR present

positive biases (ratio . 1). Correlation coefficients are an

average of 0.55, 0.42, and 0.36 for CMORPH-CDR (Fig. 11e),

PERSIANN-CDR (Fig. 11d), and GPCP (Fig. 11f), respectively.

When computed unconditionally (i.e., over all rainfall events),

biases indicate that PERSIANN-CDR and GPCP tend to

overestimate total precipitation with average biases of 1.12 for

PERSIANN-CDR (Fig. 11g) and 1.20 for GPCP (Fig. 11i). Those

values are very close to the values reported for PERSIANN-CDR

and GPCP over CONUS where the SPPs are compared to

Stage IV data (Beck et al. 2019a). For CMORPH-CDR the

value of the bias is close to unity (0.96) and comparable to the

previous value (0.94) obtained for simultaneous events only

(Fig. 11h). This is a similar result than the average value re-

ported elsewhere (Beck et al. 2019a). There is an improvement

for the correlation coefficient with average values of the cor-

relation coefficients of 0.62, 0.51, and 0.41 for CMORPH-CDR

(Fig. 11k), PERSIANN-CDR (Fig. 11j), and GPCP (Fig. 11l),

respectively. Those results are consistent with the study above

that obtained an average correlation coefficient of approximately

0.75, 0.6, and 0.52 for CMORPH-CDR, PERSIANN-CDR, and

GPCP, respectively, over CONUS using Stage IV as a reference.

Spatially, we note that PERSIANN-CDR (Fig. 11g) andGPCP

(Fig. 11i) overestimate the amount of precipitation over the

western United States (Rockies). Finally, CMORPH-CDR pres-

ents higher correlation coefficient over the Southeast, and along the

East andWest Coasts (Fig. 11k). Again, those results are consistent

FIG. 10. Performance comparison for (left) PERSIANN-CDR, (center) CMORPH-CDR, and (right) GPCP with respect to USCRN.

For most USCRN stations including for the ALCRN regional network, the analysis covers the years 2007–18. For the stations of the U.S.

Regional Climate Reference Network over the four corner states, the analysis covers the years 2009–14. The metrics for performance

assessment are (a)–(c) accuracy, (d)–(f) POD, (g)–(i) FAR, and (j)–(l) POFD. Themetrics are defined as follows: accuracy5 (YY1NN)/total,

POD5YY/(YY1YN), FAR5NY/(YY1NY), and POFD5NY/(NN1NY). The first letter (Y: yes; N: no) indicates the value at the

USCRN station, and the second indicates the value at the corresponding SPP pixel.
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with previous study that reported a similar lower performance

in the western United States due to a more complex topogra-

phy (Beck et al. 2019a). Overall, CMORPH-CDR presents

better statistics over CONUS for simultaneous rainfall events

(conditional) and for all rainfall events (unconditional) with a

slight rainfall underestimation (biases of 0.94 and 0.96, re-

spectively) and better correlation coefficients (correlation of

0.55 and 0.62, respectively). PERSIANN-CDR and GPCP

are found to underestimate simultaneous events at the satellite

and at the USCRN station (biases of 0.71 and 0.92, respec-

tively) and overestimate total rainfall accumulation (biases

of 1.12 and 1.20, respectively). The IR-based GPCP and

PERSIANN-CDR have a higher sensitivity to light rainfall

detection. This was illustrated by the highest values of POD

and at the same time the important values of POFD for

PERSIANN-CDR (Fig. 10). An analysis performed by ap-

plying a daily threshold of 0.2mmday21 on PERSIANN-CDR,

did not show significant changes in terms of biases and corre-

lations (not shown). Overall, those results are consistent with

others (Beck et al. 2019a), although the range of values for

biases and correlation coefficients are shifted toward lower

values in our case. There are two possible reasons for this:

first, we are evaluating the SPPs over a much lower number

of samples (USCRN stations versus grid points of the Stage

IV mosaic). Second, Stage IV includes a bias-adjustment

procedure that uses the same gauge information (GHCN-D)

used in SPPs’ bias adjustment [see Nelson et al. (2016) for a

description of Stage IV data]. Therefore, a better performance

with respect to Stage IV is to be expected for SPPs when

compared to their performance with respect to USCRN since

FIG. 11. Bias and Pearson’s correlation coefficient for daily precipitation with respect to USCRN in situ data for (left) PERSIANN-

CDR, (center) CMORPH-CDR, and (right) GPCP. For most USCRN stations including for the ALCRN regional network, the analysis

covers the years 2007–18. For the stations of the U.S. Regional Climate Reference Network over the four corners states, the analysis

covers the years 2009–14. Bias and correlations are computed conditionally [i.e., (a)–(f) considering only nonzeros simultaneously at the

USCRN station and at the corresponding satellite pixel, YY] and (g)–(l) unconditionally (i.e., over the entire period of record including

zeros and nonzeros alike).
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both datasets (SPPs, Stage IV) rely on similar in situ data

(GHCN-D).

3) DAILY RAINFALL DISTRIBUTION

Figure 12 displays the cumulative distribution functions

for daily rainfall for each SPP compared to corresponding

USCRN stations. For daily events observed simultaneously

by the satellite (red line) and at the USCRN station (black

line), CMORPH-CDR present a better agreement (Fig. 12b)

than GPCP (Fig. 12c) and PERSIANN-CDR (Fig. 12a). Both

distributions (CMORPH-CDR, USCRN) are comparable

throughout the daily rainfall range. CMORPH-CDR under-

estimates daily rainfall both at lower rain rates (less than 25th

percentile: Fig. 12b) and at higher rain rates (above 80th per-

centile: Fig. 12f). For GPCP, the distribution presents a sig-

nificant number (about 10%) of low rainfall events (under

0.2mm day21), which is below USCRN threshold (red line

Fig. 12c). There is a relatively good agreement at moderate rain

rates between the 25th (1.44mmday21) and 75th (11.91mmday21)

percentiles (Table 4). At higher rain rates (above 80th percentile),

we observe a significant underestimation by GPCP with re-

spect to USCRN stations (Fig. 12f). For PERSIANN-CDR,

satellite and USCRN distributions present more differences

with a relatively good agreement limited around the median

rain rate; that is between the 40th and 60th percentiles (Fig. 12a).

Below the 40th percentile, PERSIANN-CDR tends to overesti-

mate daily rainfall with higher daily rain rates than for USCRN

(Fig. 12a). Finally, like for the other two SPPs, PERSIANN-CDR

displays a significant underestimation at higher rain rates above

the 80th percentile (Fig. 12d). Table 4 reports the statistics of

the comparison of each SPP with USCRN stations (for simul-

taneous SPP and in situ daily events, for events at the satellite

or the USCRN station only, and for the entire distributions).

Figure 12 also displays the distributions of daily events ob-

served by the satellite only (blue line) and at the USCRN

station only (gray line). We note that a lot of daily rain rates

observed only byGPCP are characterized by low accumulation

(blue line Fig. 12c).We find that 20% of those events are below

the USCRN threshold (0.2mm day21). For CMORPH-CDR,

the events observed only by the satellite are characterized by

lower rain rates than events observed only at USCRN stations

(Fig. 11b). Finally, results show that the number of events

observed at the SPP only (false alarm), are about twice asmuch

as the events observed at the USCRN station only (misses) for

CMORPH-CDR and GPCP, and about seven time more for

PERSIANN-CDR (Table 4).

Figure 13 displays a comparison between SPPs and in situ

USCRN. All SPPs indicate a higher number of rainy days

(Figs. 13a–c) when compared to USCRN stations (Fig. 13d).

The ratio of rainy day recorded at the USCRN is 26% to be

compared with 52%, 33%, and 37% for PERSIANN-CDR,

CMORPH-CDR, and GPCP, respectively, over CONUS. This

ratio becomes 49%, 29%, and 31% for PERSIANN-CDR,

CMORPH-CDR, and GPCP, respectively, when considering

only SPP records above 0.2mm day21 (not shown). All SPPs

(Figs. 13e–g) are found to underestimate the average daily pre-

cipitation when compared to USCRN (Fig. 13h). The average

daily rain rate over the USCRN stations is 7.24mm day21 to be

FIG. 12. (a)–(c) Cumulative distribution function of daily rainfall for events observed simultaneously by all USCRN stations (black) and

SPPs (red), rainfall events observed only at the USCRN stations (gray), and rainfall events observed only by each SPP (blue):

(a) PERSIANN-CDR, (b) CMORPH-CDR, and (c) GPCP. (d)–(f) As in (a)–(c), but with a zoom-in above the 80th percentile on the

right-hand side of the spectra for PERSIANN-CDR, CMORPH-CDR, and GPCP. Data are for the period 2007–18 over CONUS.
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compared with 3.85, 5.17, and 5.43mm day21; those are dif-

ferences of 247%, 229%, and 225% for PERSIANN-CDR,

CMORPH-CDR, and GPCP, respectively. All SPPs underes-

timate average daily precipitation with CMORPH-CDR and

GPCP displaying comparable results, while PERSIANN-CDR

display significantly lower average daily precipitation than the

two other SPPs. Values of the 95th percentiles (Figs. 13i–l) and

maximum daily rainfall (Figs. 13m–p) show that all three

SPPs underestimate extreme precipitation when compared to

USCRN. Of the three SPPs, CMORPH-CDR is the closest of

in situ USCRN data. For all USCRN stations, the 95th percentile

is 32.6 mm day21 which is higher than 26.7 mm day21 for

CMORPH-CDR (219%), 23.86mm day21 for GPCP (224%),

and 16.93mm day21 for PERSIANN-CDR (248%) (Table 4).

While PERSIANN-CDR has lower values for the 95th and

99th percentiles than the two other SPPs, it displays the highest

maximum daily rainfall at 193.64mm day21, which is 44% lower

than the maximum of 349.3mm day21 reported by USCRN sta-

tions (Table 4).

4. Summary and conclusions

Three SPPs that are part of the NOAA Climate Data

Record Program have been evaluated over their period of re-

cord. The findings can be summarized as follows:

d Globally, in terms of average precipitation, PERSIANN-CDR

and GPCP-Daily remain relatively close due to the fact that

GPCP-Monthly is used for PERSIANN-CDR bias adjust-

ment. Over ocean, the three SPPs present comparable daily

averages because both PERSIANN-CDR and CMORPH-

CDR use GPCP for calibration with differences below 1%.

Over land, PERSIANN-CDR and GPCP remain rela-

tively close for the same raison with differences within

3%, while CMORPH-CDR displays a lower rainfall average

between214% and219% when compared to PERSIANN-

CDR and GPCP. The most important differences are found

at higher latitudes in the Northern Hemisphere.
d During the cold/warm months, PERSIANN-CDR and GPCP

display similar average daily precipitation with differences

below 1% over land. CMORPH-CDR shows systematically

lower daily average rainfall than the two other SPPs with

differences ranging from 28% for July in the Southern

Hemisphere to238% for January in theNorthernHemisphere

(cold season).
d The differences in terms of daily maximum rainfall are

important between the three SPPs, with CMORPH-CDR

and GPCP presenting the highest and the lowest daily

maximum rainfall, respectively. Differences were also sig-

nificant when looking at the number of rainy days. Over

ocean and over northern Europe, GPCP presents more rainy

TABLE 4. Statistics of daily rainfall distributions derived from theUSCRN and SPPs comparison over CONUS for the period 2007–18. All

USCRN stations are considered. Results are for a conditional comparison (R . 0) and for an unconditional comparison (R $ 0).

No. of

events

Daily rainfall (mm day21)

SPP AVG SDV P25 P50 P75 P90 P95 P99 MAX

Conditional

(R . 0)

GPCP SPP . 0 and

CRN . 0

SPP 144 198 8.94 11.67 1.44 4.85 11.91 22.39 31.70 55.17 147.46

CRN 144 198 10.02 14.73 1.30 4.50 12.80 26.20 37.60 69.40 349.30

SPP . 0 and

CRN 5 0

138 669 2.97 4.84 0.27 1.16 3.56 8.03 11.99 23.31 77.53

SPP 5 0 and

CRN . 0

58 310 3.33 5.92 0.40 1.20 3.60 8.60 13.50 29.00 114.60

SPP . 0 282 867 6.01 9.48 0.56 2.43 7.45 16.11 23.86 45.81 147.46

CRN . 0 203 055 8.09 13.18 0.80 3.10 9.70 21.80 32.60 62.00 349.30

PERSIANN-CDR SPP . 0 and

CRN . 0

SPP 170 641 7.03 9.09 1.46 3.83 9.05 17.25 24.08 43.17 193.64

CRN 170 641 9.13 13.98 1.10 3.90 11.30 24.20 35.30 66.20 349.30

SPP . 0 and

CRN 5 0

211 262 2.21 3.10 0.53 1.15 2.61 5.28 7.85 15.12 99.46

SPP 5 0 and

CRN . 0

31 410 2.46 4.52 0.40 0.90 2.50 6.20 10.00 22.10 77.90

SPP . 0 381 903 4.36 6.93 0.74 1.87 4.97 11.15 16.93 33.39 193.64

CRN . 0 202 051 8.10 13.19 0.80 3.10 9.70 21.90 32.60 62.10 349.30

CMORPH-CDR SPP . 0 and

CRN . 0

SPP 137 911 9.50 13.31 1.30 4.60 12.20 24.80 35.40 62.80 189.10

CRN 137 911 10.40 14.99 1.40 4.90 13.40 27.10 38.70 70.50 349.30

SPP . 0 and

CRN 5 0

110 552 1.47 3.07 0.20 0.50 1.50 3.60 5.90 13.80 143.70

SPP 5 0 and

CRN . 0

65 144 3.20 5.51 0.40 0.90 3.60 8.30 12.70 26.00 255.60

SPP . 0 248 463 5.93 10.89 0.40 1.60 6.40 16.90 26.70 52.60 189.10

CRN . 0 203 055 8.09 13.18 0.80 3.10 9.70 21.80 32.60 62.00 349.30

Unconditional

(R $ 0)

GPCP 2.35 6.61 0 0 1.18 7.25 13.63 32.55 147.46

PERSIANN-CDR 2.31 5.49 0 0.23 2.07 6.62 11.61 26.28 193.64

CMORPH-CDR 2.03 6.96 0 0 0.40 5.10 12.10 34.80 189.10

USCRN 2.27 7.87 0 0 0.30 5.90 13.80 38.30 349.30
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days than the two other SPPs, while over land PERSIANN-

CDR had the highest number of rainy days. The most

important differences are observed for CMORPH-CDR

characterized by a lower number of rainfall days over land

in particular at higher latitudes where microwave retrievals

are known to be deficient in capturing precipitation over snow

covered surface in winter. In terms of rainfall distribution,

despite spatial differences in the number of rainy days and in

the values of the daily maximum rainfall, PERSIANN-CDR

and GPCP have similar average rainfall due to the bias ad-

justment. With a lower number of rainfall days, and despite a

precipitation distribution skewed toward higher rain rates,

CMORPH-CDR presents lower average rainfall.
d A contingency analysis with respect to GHCN-D showed

that each SPP presents the same spatial distribution and

comparable statistics for hits, misses, and false alarm. The

comparison with GHCN-D showed that the three SPPs had

comparable biases, although CMORPH-CDR presented a

slightly better overall agreement with GHCN-D. A global

comparison with GHCN-D stations at the daily scale is,

however, delicate due to an absence of satisfying coverage

over large land areas and gauges mostly located in North

America, Australia, and Europe. Over Australia, the corre-

lation between SPPs and GHCN-D were very low and tend

to indicate a mismatch in daily accumulation period between

the in situ data and the satellites.

d The independent evaluation performed over CONUS using

USCRN stations showed that CMORPH-CDR performs better

in termsof accuracy,FAR,POD,andPOFD.PERSIANN-CDR

displays higher FARvalues than the twoother SPPs.CMORPH-

CDR presents smaller bias and higher correlation; both

conditionally and unconditionally, than the other SPPs. The

comparison of the daily rainfall events between CMORPH-

CDR and USCRN shows that this agreement is consistent

throughout the entire distribution (from low to higher rain-

fall rates). ForGPCP and PERSIANN-CDR, this agreement

is mostly satisfying in the median daily rainfall range. It was

noted that each SPP performance was noticeably better over

the eastern United States when compared to the western

United States.
d Overall, CMORPH-CDR presents a better performance

than the two other SPPs. For accumulation period greater

than the day (i.e., week, month, years), all SPPs perform

satisfyingly, which makes them suitable for long term hydro-

logical and hydroclimatological applications.When looking at

daily events, results indicated that CMORPH-CDR performs

better than the two other SPPs when considering an ensemble

of statistical metrics such as accuracy, POD, POFD, FAR,

bias, correlation, and percentile values. The underlying phys-

ical principle of CMORPH-CDR based on microwave re-

trieval, explains the improved performancewhen compared to

the two other SPPs based on IR measurements. All SPPs are

FIG. 13. (a)–(d) Percentage of rainy days, and (e)–(h) value of the average daily rainfall, (i)–(l) 95th percentile, and (m)–(p) maximum

daily rainfall retrieved from the CDR SPPs: (first column) PERSIANN-CDR, (second column) CMORPH-CDR, and (third column)

GPCP, and (fourth column) in situ USCRN for the period 2007–18 for most of the USCRN andALCRN stations and for the period 2009–

14 for the stations of the U.S. Regional Climate Reference Network over the four corner states.
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found to miss a sizeable number of rainfall events observed at

the ground (10%–20% on average) and falsely detect events

that are not observed at the ground (40%–50% on average).

While all SPPs tend to underestimate extreme rainfall (above

90th percentile), CMORPH-CDR presents a better agree-

ment withUSCRN stationswith differences of about220%at

the 90th percentile.
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APPENDIX

List of Acronyms

4CCRN Four Corner (4C) Regional Climate Reference

Network

ALCRN Alabama Regional Climate Reference Network

AMSR-E Advanced Microwave Scanning Radiometer

for EOS

AMSU-A Advanced Microwave Sounding Unit-A

AMSU-B Advanced Microwave Sounding Unit-B

AVHRR Advanced Very High Resolution Radiometer

CAMS Climate Anomaly Monitoring System

CDR Climate Data Record

CLW Cloud liquid water

CMORPH CPC morphing technique

CONUS Conterminous United States

CPC NOAA/Climate Prediction Center

DEM Digital elevation model

dz/dx Longitudinal components of slope (DEM)

dz/dy Latitudinal components of slope (DEM)

E Exposure to orography (DEM)

ENSO El Niño–Southern Oscillation

GEOS Geostationary Operational Environmental

Satellite

GHCN-D Global Historical Climatology Network-Daily

GMI GPM Microwave Imager

GPCC Global Precipitation Climatology Centre

GPCP Global Precipitation Climatology Project

GPM Global Precipitation Mission

GridSat-B1 Geostationary IRChannel Brightness Temperature

Gridded Satellite

ICDR Interim Climate Data Record

IR Infrared

LST Local standard time

MHS Microwave Humidity Sounder

OLR NOAA Interpolated Outgoing Longwave

Radiation

PERSIANN Precipitation Estimation from Remotely

Sensed Information Using Artificial Neural

Networks

PERSIANN-

CDR

PERSIANN–Climate Data Record

PMW Passive microwave

SSM/I Special Sensor Microwave Imager

SSMIS Special Sensor Microwave Imager/Sounder

TMI TRMM Microwave Imager

TOVS TIROS Operational Vertical Sounder

USCRN U.S. Climate Reference Network

z Elevation (DEM)
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